American wire gauge (AWG), also known as the Brown & Sharpe wiregauge, is a standardized wire gauge system used since 1857 predominantly inNorth America for the diameters of round, solid, nonferrous, electricallyconducting wire. Dimensions of the wires are given in ASTM standard B 258. Thecross-sectional area of each gauge is an important factor for determining itscurrent-carrying capacity.

Increasing gauge numbers denote decreasing wire diameters, which issimilar to many other non-metric gauging systems such as SWG. This gauge systemoriginated in the number of drawing operations used to produce a given gauge ofwire. Very fine wire (for example, 30 gauge) required more passes through thedrawing dies than 0 gauge wire did. Manufacturers of wire formerly hadproprietary wire gauge systems; the development of standardized wire gaugesrationalized selection of wire for a particular purpose.

The AWG tables are for a single, solid, round conductor. The AWG of astranded wire is determined by the cross-sectional area of the equivalent solidconductor. Because there are also small gaps between the strands, a strandedwire will always have a slightly larger overall diameter than a solid wire withthe same AWG.

In the American Wire Gauge (AWG), diameters can be calculated by applyingthe formula:

D(AWG)=.005·92((36-AWG)/39) inch.

For the 00, 000, 0000 etc. gauges you use -1, -2, -3, which makes moresense mathematically than "double nought." This means that inAmerican wire gage every 6 gauge decrease gives a doubling of the wirediameter, and every 3 gauge decrease doubles the wire cross sectional area.Similar to dB in signal and power levels. An approximate but accurate enoughform of this formula contributed by Mario Rodriguez is:

D = .460 * (57/64)(awg +3) or D = .460 * (0.890625)(awg+3).

Wire diameter calculations

The n gauge wire diameter dn in inches (in) is equal to 0.005intimes 92 raised to the power of 36 minus gauge number n, divided by 39:

dn (in) = 0.005 in × 92(36-n)/39

The n gauge wire diameter dn in millimeters (mm) is equal to0.127mm times 92 raised to the power of 36 minus gauge number n, divided by 39:

dn (mm) = 0.127 mm × 92(36-n)/39

Wire cross sectional area calculations

The n gauge wire's cross sercional area An in kilo-circularmils (kcmil)is equal to 1000 times the square wire diameter d in inches (in):

An (kcmil) = 1000×dn2= 0.025 in2× 92(36-n)/19.5

The n gauge wire's cross sercional area An in square inches (in2)isequal to pi divided by 4 times the square wire diameter d in inches (in):

An (in2) = (π/4)×dn2=0.000019635 in2 × 92(36-n)/19.5

The n gauge wire's cross sercional area Anin square millimeters(mm2)is equal to pi divided by 4 times the square wire diameter d inmillimeters (mm):

An (mm2) = (π/4)×dn2=0.012668 mm2 × 92(36-n)/19.5

Wire resistance calculations

The n gauge wire resistance R in ohms per kilofeet (Ω/kft) is equal to0.3048×1000000000 times the wire's resistivity ρ inohm-meters (Ω·m)divided by 25.42 times the cross sectional area Anin square inches (in2):

R(Ω/kft) = 0.3048 × 109 × ρ(Ω·m) /(25.42× An (in2))

The n gauge wire resistance R in ohms per kilometer (Ω/km) is equal to1000000000 times the wire's resistivity ρ inohm-meters (Ω·m) divided bythe cross sectional area An in square millimeters (mm2):

R(Ω/km) = 109× ρ(Ω·m) / An(mm2)

American wire gauge (AWG), also known as the Brown & Sharpe wiregauge, is a standardized wire gauge system used since 1857 predominantly inNorth America for the diameters of round, solid, nonferrous, electricallyconducting wire. Dimensions of the wires are given in ASTM standard B 258. Thecross-sectional area of each gauge is an important factor for determining itscurrent-carrying capacity.

Increasing gauge numbers denote decreasing wire diameters, which issimilar to many other non-metric gauging systems such as SWG. This gauge systemoriginated in the number of drawing operations used to produce a given gauge ofwire. Very fine wire (for example, 30 gauge) required more passes through thedrawing dies than 0 gauge wire did. Manufacturers of wire formerly hadproprietary wire gauge systems; the development of standardized wire gaugesrationalized selection of wire for a particular purpose.

The AWG tables are for a single, solid, round conductor. The AWG of astranded wire is determined by the cross-sectional area of the equivalent solidconductor. Because there are also small gaps between the strands, a strandedwire will always have a slightly larger overall diameter than a solid wire withthe same AWG.

In the American Wire Gauge (AWG), diameters can be calculated by applyingthe formula:

D(AWG)=.005·92((36-AWG)/39) inch.

For the 00, 000, 0000 etc. gauges you use -1, -2, -3, which makes moresense mathematically than "double nought." This means that inAmerican wire gage every 6 gauge decrease gives a doubling of the wirediameter, and every 3 gauge decrease doubles the wire cross sectional area.Similar to dB in signal and power levels. An approximate but accurate enoughform of this formula contributed by Mario Rodriguez is:

D = .460 * (57/64)(awg +3) or D = .460 * (0.890625)(awg+3).

Wire diameter calculations

The n gauge wire diameter dn in inches (in) is equal to 0.005intimes 92 raised to the power of 36 minus gauge number n, divided by 39:

dn (in) = 0.005 in × 92(36-n)/39

The n gauge wire diameter dn in millimeters (mm) is equal to0.127mm times 92 raised to the power of 36 minus gauge number n, divided by 39:

dn (mm) = 0.127 mm × 92(36-n)/39

Wire cross sectional area calculations

The n gauge wire's cross sercional area An in kilo-circularmils (kcmil)is equal to 1000 times the square wire diameter d in inches (in):

An (kcmil) = 1000×dn2= 0.025 in2× 92(36-n)/19.5

The n gauge wire's cross sercional area An in square inches (in2)isequal to pi divided by 4 times the square wire diameter d in inches (in):

An (in2) = (π/4)×dn2=0.000019635 in2 × 92(36-n)/19.5

The n gauge wire's cross sercional area Anin square millimeters(mm2)is equal to pi divided by 4 times the square wire diameter d inmillimeters (mm):

An (mm2) = (π/4)×dn2=0.012668 mm2 × 92(36-n)/19.5

Wire resistance calculations

The n gauge wire resistance R in ohms per kilofeet (Ω/kft) is equal to0.3048×1000000000 times the wire's resistivity ρ inohm-meters (Ω·m)divided by 25.42 times the cross sectional area Anin square inches (in2):

R(Ω/kft) = 0.3048 × 109 × ρ(Ω·m) /(25.42× An (in2))

The n gauge wire resistance R in ohms per kilometer (Ω/km) is equal to1000000000 times the wire's resistivity ρ inohm-meters (Ω·m) divided bythe cross sectional area An in square millimeters (mm2):

R(Ω/km) = 109× ρ(Ω·m) / An(mm2)

 

 

Tables of AWG wire sizes

Wire Size

SWG

AWG

BWG

Inch

MM

SQMM

Inch

MM

SQMM

Inch

MM

SQMM

4/0

0.4

10.16

81.073

0.46

11.68

107.145

0.454

11.53

104.411

3/0

0.372

9.45

70.138

0.409

10.41

85.112

0.425

10.8

91.608

2/0

0.348

8.84

61.375

0.365

9.27

67.491

0.38

9.65

73.138

1/0

0.324

8.23

53.197

0.325

8.25

53.456

0.34

8.64

58.629

1

0.3

7.62

45.603

0.289

7.35

42.429

0.3

7.62

45.603

2

0.276

7.01

38.594

0.258

6.54

33.592

0.283

7.21

40.828

3

0.252

6.4

32.169

0.229

5.83

26.694

0.259

6.58

34.004

4

0.232

5.89

27.247

0.204

5.19

21.155

0.238

6.05

28.747

5

0.212

5.38

22.732

0.182

4.62

16.763

0.22

5.59

24.542

6

0.192

4.88

18.703

0.162

4.11

13.267

0.203

5.16

20.911

7

0.176

4.47

15.692

0.144

3.66

10.52

0.179

4.57

16.402

8

0.16

4.06

12.946

0.128

3.26

8.346

0.164

4.19

13.788

9

0.144

3.66

10.52

0.114

2.9

6.605

0.147

3.76

11.103

10

0.128

3.25

8.295

0.102

2.59

5.268

0.134

3.4

9.079

11

0.116

2.95

6.834

0.091

2.3

4.154

0.12

3.05

7.306

12

0.104

2.64

5.473

0.081

2.05

3.3

0.109

2.77

6.026

13

0.092

2.34

4.3

0.072

1.83

2.63

0.095

2.41

4.561

14

0.081

2.03

3.236

0.064

1.63

2.086

0.083

2.11

3.496

15

0.072

1.83

2.63

0.057

1.45

1.651

0.072

1.83

2.63

16

0.064

1.63

2.086

0.051

1.29

1.306

0.065

1.65

2.086

17

0.056

1.42

1.583

0.045

1.15

1.038

0.058

1.47

1.697

18

0.048

1.22

1.168

0.04

1.02

0.817

0.049

1.24

1.207

19

0.04

1.02

0.817

0.036

0.91

0.65

0.042

1.07

0.899

20

0.036

0.92

0.664

0.032

0.81

0.515

0.035

0.89

0.58

21

0.032

0.81

0.515

0.028

0.72

0.407

0.031

0.81

0.515

22

0.028

0.71

0.395

0.025

0.64

0.321

0.028

0.71

0.395

23

0.024

0.61

0.292

0.023

0.57

0.255

0.025

0.64

0.321

24

0.023

0.56

0.246

0.02

0.51

0.204

0.023

0.56

0.246

25

0.02

0.51

0.204

0.018

0.45

0.159

0.02

0.51

0.204

26

0.018

0.46

0.166

0.016

0.4

0.125

0.018

0.46

0.166

27

0.016

0.41

0.132

0.014

0.36

0.101

0.016

0.41

0.132

28

0.014

0.38

0.101

0.013

0.32

0.08

0.0135

0.356

0.995

29

0.013

0.35

0.096

0.011

0.29

0.066

0.013

0.33

0.855

30

0.012

0.305

0.073

0.01

0.25

0.049

0.012

0.305

0.073

31

0.011

0.29

0.066

0.09

0.229

0.041

0.01

0.254

0.05

32

0.0106

0.27

0.057

0.008

0.203

0.032

0.009

0.229

0.041

33

0.01

0.254

0.05

0.007

0.178

0.024

0.008

0.203

0.032

34

0.009

0.229

0.041

0.0063

0.16

0.02

0.007

0.178

0.024

35

0.008

0.203

0.032

0.0056

0.14

0.015

0.005

0.127

0.012

36

0.007

0.178

0.024

0.005

0.127

0.012

0.004

0.102

0.008

37

0.0067

0.17

0.022

0.0044

0.11

0.009

     

38

0.006

0.15

0.017

0.004

0.102

0.008

     

39

0.005

0.127

0.012

0.0035

0.09

0.006

     

40

0.0047

0.12

0.011

0.0031

0.08

0.005

     

 

 

 

American Wire Gauge (AWG) Cable / Conductor   Sizes and Properties

AWG

Diameter

Diameter

Area

Resistance

Resistance

Max Current

Max Frequency

[inches]

[mm]

[mm2]

[Ohms / 1000 ft]

[Ohms / km]

[Amperes]

for 100% skin depth

0000 (4/0)

0.46

11.684

107

0.049

0.16072

302

125 Hz

000 (3/0)

0.4096

10.40384

85

0.0618

0.202704

239

160 Hz

00 (2/0)

0.3648

9.26592

67.4

0.0779

0.255512

190

200 Hz

0 (1/0)

0.3249

8.25246

53.5

0.0983

0.322424

150

250 Hz

1

0.2893

7.34822

42.4

0.1239

0.406392

119

325 Hz

2

0.2576

6.54304

33.6

0.1563

0.512664

94

410 Hz

3

0.2294

5.82676

26.7

0.197

0.64616

75

500 Hz

4

0.2043

5.18922

21.2

0.2485

0.81508

60

650 Hz

5

0.1819

4.62026

16.8

0.3133

1.027624

47

810 Hz

6

0.162

4.1148

13.3

0.3951

1.295928

37

1100 Hz

7

0.1443

3.66522

10.5

0.4982

1.634096

30

1300 Hz

8

0.1285

3.2639

8.37

0.6282

2.060496

24

1650 Hz

9

0.1144

2.90576

6.63

0.7921

2.598088

19

2050 Hz

10

0.1019

2.58826

5.26

0.9989

3.276392

15

2600 Hz

11

0.0907

2.30378

4.17

1.26

4.1328

12

3200 Hz

12

0.0808

2.05232

3.31

1.588

5.20864

9.3

4150 Hz

13

0.072

1.8288

2.62

2.003

6.56984

7.4

5300 Hz

14

0.0641

1.62814

2.08

2.525

8.282

5.9

6700 Hz

15

0.0571

1.45034

1.65

3.184

10.44352

4.7

8250 Hz

16

0.0508

1.29032

1.31

4.016

13.17248

3.7

11 k Hz

17

0.0453

1.15062

1.04

5.064

16.60992

2.9

13 k Hz

18

0.0403

1.02362

0.823

6.385

20.9428

2.3

17 kHz

19

0.0359

0.91186

0.653

8.051

26.40728

1.8

21 kHz

20

0.032

0.8128

0.518

10.15

33.292

1.5

27 kHz

21

0.0285

0.7239

0.41

12.8

41.984

1.2

33 kHz

22

0.0254

0.64516

0.326

16.14

52.9392

0.92

42 kHz

23

0.0226

0.57404

0.258

20.36

66.7808

0.729

53 kHz

24

0.0201

0.51054

0.205

25.67

84.1976

0.577

68 kHz

25

0.0179

0.45466

0.162

32.37

106.1736

0.457

85 kHz

26

0.0159

0.40386

0.129

40.81

133.8568

0.361

107 kHz

27

0.0142

0.36068

0.102

51.47

168.8216

0.288

130 kHz

28

0.0126

0.32004

0.081

64.9

212.872

0.226

170 kHz

29

0.0113

0.28702

0.0642

81.83

268.4024

0.182

210 kHz

30

0.01

0.254

0.0509

103.2

338.496

0.142

270 kHz

31

0.0089

0.22606

0.0404

130.1

426.728

0.113

340 kHz

32

0.008

0.2032

0.032

164.1

538.248

0.091

430 kHz

33

0.0071

0.18034

0.0254

206.9

678.632

0.072

540 kHz

34

0.0063

0.16002

0.0201

260.9

855.752

0.056

690 kHz

35

0.0056

0.14224

0.016

329

1079.12

0.044

870 kHz

36

0.005

0.127

0.0127

414.8

1360

0.035

1100 kHz

37

0.0045

0.1143

0.01

523.1

1715

0.0289

1350 kHz

38

0.004

0.1016

0.00797

659.6

2163

0.0228

1750 kHz

39

0.0035

0.0889

0.00632

831.8

2728

0.0175

2250 kHz

40

0.0031

0.07874

0.00501

1049

3440

0.0137

2900 kHz

 

 

AWG Notes: American WireGauge (AWG) is a standardized wire gauge system used predominantly in theUnited States to note the diameter of electrically conducting wire.The generalrule of thumb is for every 6 gauge decrease the wire diameter doubles and every3 gauge decrease doubles the cross sectional area.

Diameter Notes: A mil is a unitof length equal to 0.001 inch (a "milli-inch" or a "thousandthof one inch")ie. 1 mil = 0.001".

Resistance Notes: The resistancenoted in the table above is for copper wire conductor.For a given current, youcan use the noted resistance and apply Ohms Law to calculate the voltage dropacross the conductor.

Current (ampacity) Notes: Thecurrent ratings shown in the table are for power transmission and have beendetermined using the rule of1 amp per 700 circular mils, which is a veryconservative rating.For reference, the National Electrical Code (NEC) notesthe following ampacity for copper wire at 30 Celsius:
14 AWG - maximum of 20 Amps in free air, maximum of 15 Amps as part of a 3conductor cable;
12 AWG - maximum of 25 Amps in free air, maximum of 20 Amps as part of a 3conductor cable;
10 AWG - maximum of 40 Amps in free air, maximum of 30 Amps as part of a 3conductor cable.


Check your local electrical code for the correct current capacity (ampacity)for mains and in wall wiring.

Skin Effect and Skin Depth Notes: Skin effect is the tendency of an alternating electric current (AC) todistribute itself within a conductor so that the current density near thesurface of the conductor is greater than that at its core. That is, theelectric current tends to flow at the "skin" of the conductor. Theskin effect causes the effective resistance of the conductor to increase withthe frequency of the current.Themaximum frequency show is for 100% skin depth(ie. no skin effects).

AWG Notes: American WireGauge (AWG) is a standardized wire gauge system used predominantly in theUnited States to note the diameter of electrically conducting wire.The generalrule of thumb is for every 6 gauge decrease the wire diameter doubles and every3 gauge decrease doubles the cross sectional area.

Diameter Notes: A mil is a unitof length equal to 0.001 inch (a "milli-inch" or a "thousandthof one inch")ie. 1 mil = 0.001".

Resistance Notes: The resistancenoted in the table above is for copper wire conductor.For a given current, youcan use the noted resistance and apply Ohms Law to calculate the voltage dropacross the conductor.

Current (ampacity) Notes: Thecurrent ratings shown in the table are for power transmission and have beendetermined using the rule of1 amp per 700 circular mils, which is a veryconservative rating.For reference, the National Electrical Code (NEC) notesthe following ampacity for copper wire at 30 Celsius:
14 AWG - maximum of 20 Amps in free air, maximum of 15 Amps as part of a 3conductor cable;
12 AWG - maximum of 25 Amps in free air, maximum of 20 Amps as part of a 3conductor cable;
10 AWG - maximum of 40 Amps in free air, maximum of 30 Amps as part of a 3conductor cable.


Check your local electrical code for the correct current capacity (ampacity)for mains and in wall wiring.

Skin Effect and Skin Depth Notes: Skin effect is the tendency of an alternating electric current (AC) todistribute itself within a conductor so that the current density near thesurface of the conductor is greater than that at its core. That is, theelectric current tends to flow at the "skin" of the conductor. The skineffect causes the effective resistance of the conductor to increase with thefrequency of the current.Themaximum frequency show is for 100% skin depth (ie.no skin effects).